Projet

Général

Profil

Cyprien Lopez

Research on interior/exterior conditions of the hive

https://www.snapiculture.com/wp-content/uploads/2021/10/BeeHave_Etat_de_lart.pdf

Open source similar projects already existing

Connected Hive Monitoring an open source Hakster.io's project from FireCrackers

https://www.hackster.io/firecrackers/connected-hive-monitoring-9c3ee8#story

Made by a group of students from 2nd year at Polytech Sorbonne and Plaisir Village Animation association.
In response at Colony Collapsse Disorder issues.

Their solution was to create beehive monitoring. They added sensors for : weight, temperature, humidity and luminosity. Communicate with LoraWan, TTN and Beep.

Electronic card

Power module :

- 3.7V, 1050maH battery, solar pannel, LiPo Rider Pro.
- 3.3V voltage regulators x2 -> power system and show battery percentage
-> shutdown sensors to reduce electric consumption

Sensors :

- luminosity : voltage/current sensor INA219 with solar panel
- temp and humidity in and out : DHT22
- temp in: 2 or 3 temp probes DS18B20
- weight sensor : load cell and an amplifier HX711

System:

- LoRa-E5 module
- Nano 33 BLE Sense

Others interresting things from similar projects

https://www.hackster.io/bumblebeez/connected-hive-9ff416

- TPL5110 : low energy consumption module, shut down componants and wake them up only when needed working with a timer
- usually use TTN LORA

https://www.hackster.io/bee-efficient/connected-bee-hive-project-remote-hive-monitoring-e7cd34

Interesting news about frequency analysis of the colony. Focus on low freq 98-583 Hz with 10 steps of 48 Hz :

- 350 Hz -> quacking = multiple queens are present and would fight to become the queen of the colony

- 450 Hz -> High spectral density that can indicate tooting which happens when a bee signals that she is the future queen to be born (allowing other potential queens not to be released by workers).

- 510 Hz -> can indicate that the colony is in bad health.

https://pmc.ncbi.nlm.nih.gov/articles/PMC7711573/

- 5k Hz (with 15-16k Hz harmonics) can mean guard bees are against an hornet attack

Maladies

Maladies Conséquences Détection Sources
acarapidose s'installe dans la tréchée des abeilles, s'y reproduit et pond -> fatigue l'abeille et l'empèche de voler -> grouillement et sautillement devant l'entrée du ruchier (printemps surtout), 15j pour avoir une nouvelle génération de larve L’acarapisose ne peut être détectées en laboratoire qu’en utilisant un microscope ou par une méthode immuno-enzymatique (ELISA). Il n’y a aucune méthode fiable pour la détection des infections primaire - https://www.blv.admin.ch/blv/fr/home/tiere/tierseuchen/uebersicht-seuchen/alle-tierseuchen/tracheenmilben-krankheit--acarapis-woodi-.html#158_1456315641844__content_blv_fr_home_tiere_tierseuchen_uebersicht-seuchen_alle-tierseuchen_tracheenmilben-krankheit--acarapis-woodi-_jcr_content_par_tabs
- https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.02.01_Acarapisose_2008.pdf
nosemose parasite qui attaque les cellules intestinales des abeilles et dérègle leur digestion ainsi que leur système immunitaire, Abeilles faibles et désorientées devant la ruche, traces de Diarrhées dans et autour de la ruche clinique ou en labo - https://www.naturapi.com/naturapicafe/sante-de-la-ruche-tout-savoir-sur-la-nosemose/
- https://gds19.org/Docs/PDF/UP/2015/UP-01-10-15.pdf

Sensors

Humidity

here are few research on the most used humidity sensors.

Sensor Type Humidity Range (%) Humidity Accuracy (%) Temperature Range (°C) Temperature Accuracy (°C) Power Supply (V) Interface Power Consumption Waterproof Price (€) classique / waterproof Notes
SHT20 Humidity + Temperature 0-100 ±3 -40 to +125 ±0.3 2.1-3.6 I2C Moderate Yes 5 - 25 Good for harsh environments, moderate precision, affordable.
SHT31-DIS-P Humidity + Temperature 0-100 ±2 -40 to +125 ±0.3 2.4-5.5 I2C Low (<1 mA) Yes 5 - ? High precision, robust, suitable for demanding applications.
AM2315 Humidity + Temperature 0-100 ±2 -40 to +80 ±0.3 3.3-5.5 I2C Moderate Yes Durable, ideal for outdoor or high-humidity conditions.
HDC1080 Humidity + Temperature 0-100 ±2 -40 to +85 ±0.2 2.7-5.5 I2C Ultra-low (<1 µA in sleep mode) Optional 15-25 Low-power, compact, great for battery-powered systems.
DHT22 (AM2302) Humidity + Temperature 0-100 ±2 -40 to +80 ±0.5 3.3-6 Digital Low (~2.5 mA during measurement) Optional 8 Affordable, but less robust in extreme environments compared to others.
DHT11 Humidity + Temperature 20-90 ±5 0 to +50 ±2 3.3-5.5 Digital Very low (~2 mA) No 5 Very low cost, limited accuracy, best for basic applications.
DS18B20 Temperature only - - -55 to +125 ±0.5 3-5 1-Wire Low (~1 mA active, ~0.75 mA idle) Yes 5 - 9 Fully waterproof, ideal for temperature monitoring in wet or confined spaces.
BME280 Humidity + Temp + Pressure 0-100 ±3 -40 to +85 ±0.5 1.8-3.6 I2C/SPI 0.1 μA (idle), 1.8 μA (active), 3,6 μA (active with pressure) No 4 Multifunctional sensor, measures pressure as well, suitable for compact projects.
BME680 Humidity, temperature, pressure, gaz 0-100% ±3 % r.H -40 à +85 °C ±0,5 °C à 25 °C 1,71 V à 3,6 V I2C, SPI 0.15 µA (idle) 2.1 µA (active), 3.15 (active with pressure too) No 7 overkill, peu de consommation

Comparative table

here are few research on the most used humidity sensors.

Sensor Type Humidity Range (%) Humidity Accuracy (%) Temperature Range (°C) Temperature Accuracy (°C) Power Supply (V) Interface Power Consumption Waterproof Price (€) classique / waterproof Notes
SHT20 Humidity + Temperature 0-100 ±3 -40 to +125 ±0.3 2.1-3.6 I2C Moderate Yes 5 - 25 Good for harsh environments, moderate precision, affordable.
DHT22 (AM2302) Humidity + Temperature 0-100 ±2 -40 to +80 ±0.5 3.3-6 Digital Low (~2.5 mA during measurement) Optional 8 Affordable, but less robust in extreme environments compared to others.
DS18B20 Temperature only - - -55 to +125 ±0.5 3-5 1-Wire Low (~1 mA active, ~0.75 mA idle) Yes 5 - 9 Fully waterproof, ideal for temperature monitoring in wet or confined spaces.
BME280 Humidity + Temp + Pressure 0-100 ±3 -40 to +85 ±0.5 1.8-3.6 I2C/SPI 0.1 μA (idle), 1.8 μA (active), 3,6 μA (active with pressure) No 4 Multifunctional sensor, measures pressure as well, suitable for compact projects.
BME680 Humidity, temperature, pressure, gaz 0-100% ±3 % r.H -40 à +85 °C ±0,5 °C à 25 °C 1,71 V à 3,6 V I2C, SPI 0.15 µA (idle) 2.1 µA (active), 3.15 (active with pressure too) No 7 overkill, peu de consommation

Communication

What's used in Mellia

Node-red est un outil de développement basé sur les flux. Il sert ici à récupérer les données en provenance du broker MQTT fournit par TTN et à les enregistrer dans une base de donnée influxDB. Les ressources pour le déployer se situe dans le répertoir software.

Pour se connecter au broker on commence par ajouter le module MQTT à l'interface node red en suivant ce tutoriel : https://www.thethingsnetwork.org/forum/t/mqtt-in-node-red-howto/39909

NB : nous utilisons Orange plutôt que TTN pour recevoir les données LoRa mais le principe est le même

OpenHive Scale card

add here sch of the card

Here is the schematic of the electronic card of the open hive scale. We want to "add" it on our own system a connected hive, Plan Bee, instead of the initial strain gauge Mellia was using. Then I started to work on this file, first i divided the sheet in few groups based on what they do in our system.

1.8 V to 3.6 V power supply
–40 °C to 105 °C temperature range
Shutdown mode: 31 nA (VDD = 3 V)
Standby (
RTC) mode:360 nA (VDD = 3 V)
Stop2 (+ RTC) mode: 1.07 µA (VDD = 3 V)
Active-mode MCU: < 72 µA/MHz (CoreMark®)
Active-mode RX: 4.82 mA
Active-mode TX: 15 mA at 10 dBm and 87 mA at 20 dBm (LoRa® 125 kHz